

SAVING THE TITANIC ONE ALGORITHM AT A TIME
Implementing Automated ML using Python

-Azure Machine Learning Studio, Automated ML

PROBLEM STATEMENT:

 State-of-the-art machine learning models and artificially intelligent systems consists of
complex processes and deal with a lot of choices right from hyper parameter tuning to
choosing models that provide a better accuracy and the metrics that govern this
behavior. To achieve this result manually a lot of experiments consume a lot of time and
compute resources are needed. There are many kinds of machine learning algorithms
that you can use to train a model, and most of the time it becomes exceedingly difficult
and complex to choose the most effective algorithm for your data and prediction
requirements. Additionally, we perform a lot of preprocessing steps that help us prepare
it for the ML models such as normalization, missing feature imputation, and others. In
the quest to find the best model for our requirements, we play around with various
permutations and combinations of algorithms and preprocessing transformations; which
takes a lot of time and compute resources.

SOLUTION ARCHITECTURE:

SOLUTION:

Now, I have spent a lot of time figuring out the perfect model for my project, tuning the
hyper parameters so that I get better accuracy and trust me it gets exhausting. With the
help of Azure Machine Learning we automate the comparison of models trained using
different algorithms and preprocessing options. We can use the visual interface to
interact with the studio online or we can use SDK’s available to create personalized
customizations. The only difference between these two methods is that SDK gives you
greater control over the settings for the automated machine learning experiment, but
the visual interface is easier to use.

We will explore the titanic dataset and understand how the entire process of machine
learning gets automated. Before we continue let us look at what is Automated ML. This
exercise will guide you how to you can use your Azure Subscription (
https://azure.microsoft.com/en-us/free/) and Azure Machine Learning Studio to it
automatically try multiple pre-processing techniques and model-training algorithms in
parallel. Here we explore the power of cloud compute to find the best performing ML
model for our data. Automated ML helps us to train models without an in-depth data
science or programming knowledge. For people having some experience in data science
and programming, it provides a way to save time and resources by efficiently
automating the process of algorithm selection and hyperparameter tuning.

Let us start by creating a Machine Learning resource in our Azure cloud. I have named
my resource blog-space but feel free to name it whatever you like and proceed with the
default values.

 After creating the resource group, you should get a page like the one shown above,
click on the Studio Web URL that will take you to the Machine Learning Studio.

This is how the studio looks like and as we can see there are a lot of amazing features
that can be and are being used by developers around the world. In the left column scroll
down and click on compute. Here we will create our compute instance and compute
cluster. We keep the default values, but you can select the VM according to your
subscription. I have selected Standard_DS11_v2 but you are free to choose from the list.

In the Compute Instance click on the Jupyter option which opens the Jupyter Notebook
(Make sure to not open Jupyter Lab). Next, we will create a new notebook and I have
named my notebook Automated ML. Lets go through the notebook one cell at a time.
In addition to the latest version of the azureml-sdk packages, we need the azureml-
train-automl package to run the code in this notebook.

With the required SDK installed we are ready to connect to our workspace.

We need to load the training data in our notebook. The code below looks complicated
but all it is doing is searching the datastore for a dataset named Titanic. If it is not
present, then upload the data and store it in the datastore.

Remember the cluster we created before well let's connect to it here.

One of the most important configuration settings is the metric by which model
performance should be evaluated. You can retrieve a list of the metrics that are

calculated for a particular type of model task like this:

Having decided the metric, you want to optimize (AUC_weighted), you can configure the
automated machine learning run. Since this is a simple dataset I have kept the number

of iterations to 4.

With all configurations set we are now ready to run our experiment. I have set
show_output = False but you can set it to True to see the model being run in real-time.

We can retrieve the best performing as done below and additionally we can view the
best run transformation and best run metrics as well.

Finally, having found the best performing model, you can register it.

CHALLENGES FACED:
Initially when trying out Automated ML in my local system I faced a few issues regarding
connecting my Azure subscription with Visual Studio Code. I couldn’t find a solution for
it and hence moved on to Azure Cloud. It turned out to be perfect as it eliminated the
need to create a JSON file which required the endpoints and subscription key.

The outputs of some of the code cells were a little difficult to understand. For someone
having little to no knowledge about this domain the output may look like gibberish. For
example, when we submit the AutoML experiment we get an extensive list of values
including not only the models used but also the dependencies and their versions. I had
to spend some time figuring out and understanding the output.

BUSINESS BENEFITS:
All Azure Machine Learning does is help data scientists and developers to build, deploy,
and manage high-quality models faster and with 100% confidence. With such large and
complex operations in place industries need a solution that can be brought into
production as soon as possible and reliable at the same time. Some features are as
follows

1. Open-source interoperability
2. rapid model training and deployment
3. integrated tools

This tool helps a development experience that supports the entire machine learning
process right from building to training and deploying models. Different models require
different formats of input data, we eliminate this problem by developing accurate
models with automated machine learning for image, textual or even tabular models by
using feature engineering and tuning the hyperparameters. We can even use Visual
Studio Code to go from local to cloud training smoothly and autoscale with powerful
cloud-based CPU and GPU clusters.

We can evaluate machine learning models with reproducible and automated workflows
to verify the

1. explainability,
2. error analysis,
3. causal analysis,
4. model performance,
5. exploratory data analysis,

Contextualize responsible AI metrics for both technical and non-technical audiences to
involve stakeholders and streamline compliance review. So that’s it from my side. Happy
Coding!

-Manav Mandal (Student at MESCOE)

https://github.com/MXNXV/Automated-ML

https://www.linkedin.com/in/manav-mandal-5b1496196/

